GA Tech vs. OU (which program?)

Wow. I haven’t blogged in a long time. To be fair, it’s been busy and the time I have had, I’ve chosen to spend on time relaxing. I’m only taking a few minute just now because the grad-school prep has kicked into high gear, and I have some thoughts on the process.

I wasn’t sure what I might expect in applying for grad programs. I did know that I needed an asynchronous online program delivered by a good and preferably recognizable school. A traditional education environment wouldn’t really work for me. After researching programs for a couple weeks, I narrowed the list down to 3 top pics: Georgia Tech (GA Tech), University of Oklahoma (OU), and Michigan Tech. I was also in touch with recruiters from three other schools that didn’t really fit my need. One of them appears to be more of a degree mill than the kind of program I want. There were two more I hadn’t quite gotten around to calling, but they were more on the expensive end and would be down the list. In any case, I put in for GA Tech first (my top choice), then OU (University of Oklahoma). I never got around to my #3 pick because OU accepted me before the ink was dry on my last letter of reference.

Many weeks after my initial application, GA Tech came through with an acceptance letter. Meaning I got into both schools and I had to make a choice. For me, it a huge surprise. Yes, I had really good reference letters, brought a pretty robust track record in data management and statistics, but I’ve been out of school for about 20 years. For OU, I was really confident about my application package. Given their acceptance rate, I reckoned I had a really solid shot. GA Tech, however was a different story. To start, it’s a notoriously difficult school to get into (23% acceptance rate?), and the Online Masters program is no different than on-campus. While I do have a good work-record, I was worried that my ‘pretty okay’ GPA and (while I think it was fantastic), relatively unremarkable university degree were going to work against me. In any case, I made the cut, and I’m feeling really good about that.

Anyhow, I got into both schools I applied to, so why did I pick GA Tech? That’s actually what I wanted to write this blog about. Perhaps you’re also looking at a data science degree and what to know why I picked one over the other? To be sure, I haven’t started courses yet so the relative value isn’t known, it’s just sort of anticipated, but I do expect to be challenged and learn a TON (that’s the point, right?).

The whole reason I want to get the MS is to expand my knowledge and skills in the realm of data science. Not just statistics or biometrics, but sort of overall. I’m a senior research analyst, but I actually don’t have the full background I’d need to go to another organization if I needed to (you never know, I’ve got no plans to leave, but I do have a powerful need to keep a paycheck). Plus, those skills can help us my current organization tackle research questions with even more capacity and knowledge. Just the other day, I was asked about a meta-analysis of income. This is a master’s thesis on it’s own, and it’s on my radar to just sort of slip it in at some point… How much better would it be if I took that database of well over a million rows and hundreds of variables and hit it with a giant statistical baseball bat? That’s the stuff grant proposals are made of. Anyhow, that was my frame of mind when looking at these.

OU (University of Oklahoma)

So, what did I think of OU? It looks like a ‘solid’ program. I can say that their student success game is good enough that I seriously considered just staying on track there. The program has an ‘average’, if slightly more competitive price-tag – About $32K USD in total (it was a bit more and I think subject to change, but it’s a university, that’s how it goes). The key for me, however, was the mix of coursework The classes I’d have taken are:

  • Required Classes:
    • Computing Structures
    • Algorithm Analysis
    • Advanced Analytics and Metaheuristics
    • Fundamentals of Engineering Statistical Analysis
    • Database Management Systems
    • Intelligent Data Analytics
    • Professional Practice
  • Electives (probably, it’s not clear what is offered in any given semester based on the materials I have)
    • Financial Engineering Analytics
    • Bayesian Statistics
    • Time series Analysis (I think? – this may not have been offered in a way I could do it)
    • Introduction to R
    • Advanced R
    • Data visualization

The total list of courses offered were fine for this kind of program, but missed some key elements, while involving things I’d like to swap out. Tor example the financial stuff and database management systems are low-priorities for me. Further, I don’t know that R would’ve been the best use of my time because that’s something I can learn on my own. Nevertheless, these remained the most valuable of the remaining courses.

Overall, the application and on-boarding experience was great, I was really impressed and never for a minute felt like I didn’t know what was coming. Thinking about that and the mix of classes, I’d describe This as the kind of program designed for people looking to transition into data and analytics from a related job or an entry level job to something more advanced.

This is a pretty luke-warm review of OU, but there is enough in there that It would have been a valuable learning experience. If you’re new to data science with some background or looking to jump up a level from junior or mid-level to a senior analyst, I think this is likely to be a really solid option and reasonably priced. And again, they have a VERY strong student success process.

Georgia Institute of Technology (Georgia Tech. / GT)

What was it about GA Tech? Well, if you’re researching these, you’ll probably have spotted that the price-tag clocks in at about 1/3 the usual price. I found it at $10K USD. It’s low enough, I even asked admissions to verify the price. That was the key attention getter and driver initially. Their admissions deadlines are a bit more stringent than other programs, and I found myself up against a deadline, so I applied before I’d fully digested other options.

I would describe the admissions process as ‘fine’, but a little slower on the information dissemination than I’d like, though it’s not proved a problem. I’ve received helpful responses to inquires in a timely fashion. One difference from OU was that this program also made it clear you need to be prepared with a strong STEM background to begin with, including pre-requisites such as Calculus, python programming, statistics and probability and Liner Algebra from previous schoolwork. This is also pretty typical among these programs, but OU placed less focus on that (Michigan Tech. my 3rd choice also emphasized these).

The course material, while still including things that aren’t essential for me, is very much in-line with my goals for this degree. Also, there are 3 tracks to help you focus your attention, I picked the Analytical Tools Track. The courses I’m going to try to take (again, not sure how scheduling works):

  • Required:
    • Introduction to Computing for Data Analytics (I may see about swapping this one out. The course description sort of suggests this is what I already do every day.)
    • Introduction to Analytics Modeling
    • Business Fundamentals for Analytics
    • Data Visualization Analytics
    • Data Analytics in Business
    • Applied Practicum
  • Electives
    • Regression Analysis
    • Bayesian Statistics
    • Probabilistic Models
    • Time Series Analysis
    • Computational Statistics

I think really, if you’re looking at something like this, unless you’ve already got an undergrad that’s strong in the maths or computer science, even getting accepted may be a challenge. It works for me, and I’ve got the background to launch in with an expectation of success. Term starts in about eight weeks, and I already have a significant amount of review and prep work to do (I’m about 3 chapters into my old Linear Algebra book at this point, and I’ve got lots more to do). I’m generally up to that challenge, as it is review, but I can see where some prospective students would be intimidated.

Other considerations: Neither program required GRE tests, OU is on a Fall-Winter-Summer schedule that appears to be partially aligned with the on-campus schedule, GT is fully aligned with a Fall-Winter schedule. Both programs are fully accredited and will result in a Master’s of Science in Data Science and Analytics. Both require a practicum, it appears OUs practicum comes from corporate partners or your current employer, where the GA tech one is less clear, seems to be either from your own job or they have ready-made projects that can be used.

So, that’s where I am. As I get into it and start really working toward this, I’ll be posting more about it, but for now, I’m going to unwind with some video games before bedtime.


4 thoughts on “GA Tech vs. OU (which program?)

  1. Jim Magdanz says:

    Based on both course offerings and preparation requirements, Georgia Tech seems like the better choice to me. My son Grant faced similar preparation challenges for undergrad CS at UW (we got him tutors), which I think he would say were more challenging than the actual course work once he got in. But his order of events was “prep, apply, accept” because application to CS was open until his junior year. You’ve crossed that hurdle already. Baysean is huge. Visualization has been a weakness of the Division program.

    Yes, you CAN learn R on your own, but I emerged from my R courses with lots of robust script that would not have been easy to learn on my own. The problem with learning R is that it’s like hopping on a speeding freight train, or rather choosing which of countless speeding academic freight trains, most of whom will run out of gas in a year or two when proponents graduate, finish post-docs, get tenure, or simple exhaust themselves.

    The challenge you face in remote learning is missing the informal conversations with fellow grad students about choosing which freight trains to choose.

    Finally, the biggest factor for me in finishing my many stats classes was joining/forming 3-5 student study groups to do homework. I still spent 20-40 hours a week on EACH stats class’ homework.

    Liked by 2 people

  2. Best of luck, Dave. I know you made the right choice.

    Liked by 2 people

Make it a conversation, leave a comment below.

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s